РЫЧАЖНЫЕ ПРИБОРЫ

1. Классификация рычажных измерительных приборов

Рычажно-механические приборы — это *средства измерений с механическим преобразованием*.

Рычажно-механические приборы обладают высокой точностью, универсальностью и предназначены в основном для относительных измерений, точностью от 0,01 до 0,0005 мм в зависимости от типа измерительной головки. Некоторые из них могут быть использованы также и для абсолютных измерений малых величин (размеров). Высокая точность показаний этих приборов получена рычажно-механических использования различных позволяющих значительной степени **увеличить** передаточное число механизма.

Принцип действия этих приборов основан на *преобразовании малых перемещений измерительного стержня в большие перемещения указателя* (стрелки, шкалы, светового луча и т.д.).

Конструкции этих приборов весьма разнообразны и могут быть подразделены на 5 типов:

- а) рычажного типа (рычажные индикаторы, миниметры);
- б) с зубчатой передачей (индикаторы часового типа);
- в) рычажно-зубчатые (рычажные скобы, рычажно-зубчатые индикаторы);
- г) пружинные (микрокаторы, миникаторы, микаторы, оптикаторы);
- **д) комбинированные**, построенные на принципе сочетания рычажнозубчатого механизма с микрометрической парой (рычажные микрометры).

Рычажно-механические приборы делятся на три основные группы:

- 1) **Измерительные головки** съемные отсчетные устройства, предназначенные для оснащения приборов и контрольно—измерительных приспособлений;
- 2) **Приборы со съемными отсчетными устройствами** индикаторные скобы, нутромеры, глубиномеры и др.;
- 3) **Приборы со встроенными отсчетными устройствами** рычажные скобы, рычажные микрометры и др.

Приборы применяют для измерения диаметральных и линейных размеров, а также отклонений формы и расположения поверхностей (или осей). Как правило, их используют для измерения методом сравнения с мерой. Если размеры изделий меньше диапазона показаний прибора, то применяют метод непосредственной оценки.

В ремонтном производстве наиболее часто применяются индикаторы часового типа и индикаторные нутромеры, а для высокоточных измерений – рычажные скобы, миниметры, пружинные микрометры (микрокаторы).

2. Индикаторы часового типа

Индикаторы часового типа (с зубчатой передачей) предназначаются для измерения линейных размеров абсолютным и относительным методами, определения величины отклонения от заданной геометрической формы и взаимного расположения поверхностей.

Этими приборами определяют:

- овальность,
- конусообразность,
- радиальное и торцовое биение,
- неплоскостность и непрямолинейность,
- отклонение от правильного взаимного расположения поверхностей и т. д.

Они широко используются также в различных измерительных приспособлениях. Предел измерения индикатором составляет 0-10 мм, а цена деления 0.01 мм.

Индикаторы часового типа с ценой деления 0,01 мм (ГОСТ 577-68*) изготовляются **двух типов**:

ИЧ (типы **ИЧ 02, ИЧ 05, ИЧ 10, ИЧ 25 и ИЧ 50**) — обыкновенный, с перемещением измерительного стержня **параллельно шкале**, с пределами измерения 0 - 2 мм (малогабаритные); 0 - 5 мм, 0 - 10 мм, 0 - 25 мм, 0 - 50 мм.

ИТ (тип **ИТ 02**) — торцовые, с перемещением измерительного стержня перпендикулярно к шкале, с пределами измерения 0-2 мм.

Конструкция индикатора часового (нормального) типа (рис. 1) основана на том, что в его механизме передаточное устройство выполнено в виде зубчатых колес и рейки, преобразующих поступательное перемещение измерительного стержня 8 с наконечником 9 во вращательное движение основной (большой) стрелки 5.

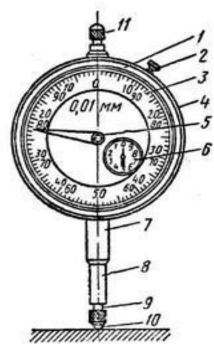


Рисунок 1 – Устройство индикатора часового типа

1 – корпус; 2 – стопор; 3 – циферблат; 4 – ободок; 5 – стрелка; 6 – указатель; 7 –гильза; 8 – измерительный стержень; 9 – наконечник; 10 – рабочий конец (шарик); 11 – головка

Передаточное число зубчатых колес выбрано таким, что при вертикальном перемещении измерительного стержня на 1 мм основная стрелка совершает полный оборот. Шкала индикатора (циферблат 3) имеет 100 делений. Таким образом, цена деления составляет 0,01 мм. Погрешность часовых индикаторов в пределах одного оборота равна тоже 0,01 мм. Перемещение стержня на целые миллиметры отмечается стрелкой на указателе числа оборотов 6. Установка на ноль производится поворотом накатанного ободка 4 большого циферблата или головки 11 измерительного стержня (при неподвижном циферблате). При измерении индикатор устанавливают на индикаторные стойки различных конструкций.

Устройство индикатора типа ИЧ 10 показано на рис. 2.

На лицевой стороне корпуса 1 расположен циферблат 2 со шкалой и ободок 3. В центре циферблата установлена стрелка 4 и ниже указатель 5 числа оборотов стрелки. С корпусом 1 жестко связана гильза 6, в которой перемещается измерительный стержень 7 с наконечником 8. В верхней части корпуса выступает головка измерительного стержня.

Гильза 6 и ушко, которое расположено с задней стороны корпуса, служат для крепления индикатора на стойках, штативах и приспособлениях. Поворотом ободка 3, на котором закреплен циферблат, стрелку совмещают с любым делением шкалы (чаще с нулевым). За головку стержень отводят при установке изделия под измерительный наконечник.

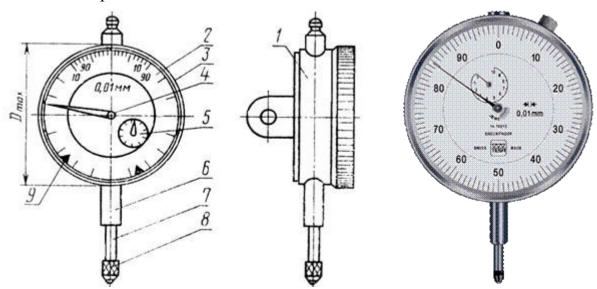


Рисунок 2 – Устройство индикатора часового типа ИЧ-10

Принцип действия индикатора заключается в следующем (рис. 3).

Измерительный стержень 12 перемещается в точных направляющих втулках 2, запрессованных в гильзы корпуса. На измерительном стержне нарезана зубчатая рейка 11, которая поворачивает триб 10 с числом зубьев z=16 (трибом в приборостроении называют зубчатое колесо с числом зубьев $z\pm18$). Зубчатое колесо 9 (z=100), установленное на одной оси с трибом 10, передает вращение трибу 8 (z=10). На оси триба 8 закреплена стрелка 3. В зацеплении с трибом 8 находится также зубчатое колесо 7 (z=100). На оси колеса закреплены указатель 4 и втулка 6 с пружинным волоском 5, другой конец которого прикреплен к корпусу. Колесо 7 и связанный с ним волосок 5 обеспечивают постоянное касание

профилей зубьев при прямом и обратном ходе. Пружина 1 служит для создания измерительного усилия величиной 2 Н на стержне.

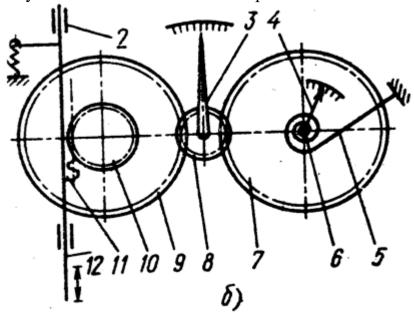


Рисунок 3 – Принципиальная схема индикатора ИЧ

Передаточное отношение зубчатого механизма выполнено так, что при перемещении измерительного стержня на расстояние l=1 мм стрелка совершает полный оборот, а указатель поворачивается на одно деление. Шкала индикатора имеет число делений 100. Цена деления шкалы циферблата c=l/n=1/100=0,01 мм.

К торцевым индикаторам часового типа по ГОСТу 577 относятся приборы с перемещением стержня перпендикулярно к их шкале. Выпускают горизонтальные индикаторы (рис. 4,a) и боковые (рис. $4,\delta$).

Рис. 4. Разновидности индикаторов часового типа: a — горизонтальный; δ — боковой

Измерительные характеристики и внешний вид индикаторов часового типа представлены в таблицах 1 и 2.

Таблица 1 – Индикаторы часового типа ИЧ ГОСТ 577-68

Модель	Цена деления, мм	Класс точности
ИЧ 10 без ушка	0,01	кл. 0; кл. 1
ИЧ 10 с ушком	0,01	кл. 0; кл. 1

Рисунок 5 – Индикаторы часового типа

Таблица 2 – Индикаторы часового типа цифровые ИЧЦ ГОСТ 577-68

Модель	Цена деления, мм	Класс точности	
ИЧЦ 10 без ушка	0,01	кл. 0; кл. 1	100
ИЧЦ 10 с ушком	0,01	кл. 0; кл. 1	

Индикаторы цифровые при измерениях не требует расчетов, имеют встроенный порт (вывод результатов на ПК).

По исполнению корпуса индикаторы разделяются на обыкновенные, брызгозащитные и пылезащитные.

Обыкновенным считается исполнение, предохраняющее механизм индикатора от загрязнения и механических повреждений.

Брызгозащитным считается исполнение, предохраняющее механизм индикатора от попадания брызг во время пребывания в брызгонесущей среде.

Пылезащитным считается исполнение, предохраняющее механизм индикатора от попадания пыли во время пребывания в воздухе с повышенной концентрацией пыли.

Примеры условных обозначений.

Индикатора исполнения ИЧ с диапазоном измерения 0-2 мм, обыкновенного, класса точности 0:

Индикатор ИЧ 02 кл. 0 ГОСТ 577.

Индикатора исполнения ИЧ с диапазоном измерения 0-10 мм, брызгозащитного, класса точности 1:

Индикатор ИЧ 10Б кл. 1 ГОСТ 577.

Индикатора исполнения ИТ, пылезащищенного, класса точности 1.

Индикатор ИТП кл. 1 ГОСТ 577.

3. Рычажно-зубчатые измерительные головки

По **ГОСТу 18833** выпускаются рычажно-зубчатые измерительные головки 2 типов: **ИГ** и **ИГМ** (М – малогабаритные) с ценой деления 0,001 мм и 0,002 мм, а по **ГОСТу 9696** — индикаторы многооборотные с ценой деления тоже 0,001 и 0,002 мм.

Внешний вид рычажно-зубчатой измерительной головки типа ИГ приведен на рис. 6,а. Головка состоит из корпуса 1, циферблата 2, стрелки 3, арретира 4, присоединительной гильзы 5, измерительного стержня 6 с наконечником 7, указателей 8 поля допуска изделия и винта точной установки механизма в нулевое положение. Арретир (рычаг) необходим для подъема измерительного стержня перед установкой изделия.

Механизм головки ИГ состоит из двух неравноплечих рычажных пар и одной зубчатой передачи. Перемещение измерительного стержня 1 через рычаг 2 передается малому плечу рычага 3. Большое плечо рычага 3 передает движение рычагу 4 зубчатого сектора 5. Зубчатый сектор вращает триб 6, на оси которого установлена стрелка 7 со спиральным волоском 8, устраняющим зазоры в передаче. Измерительное усилие создается пружиной 9, прикрепленной к рычагу 2.

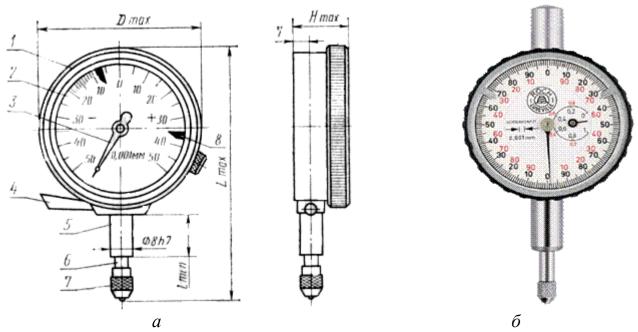


Рисунок 6 – Рычажно-зубчатая измерительная головка

Многооборотный индикатор МИГ (рис. 6,6) имеет те же основные узлы, что и индикатор ИГ. На циферблате нанесено 200 делений круговой шкалы и расположен указатель числа оборотов стрелки, полное число оборотов которой равно 5. В отличие от рычажно-зубчатой головки ИГ (рис. 7) вместо стрелки 7 на одной оси с трибом 6 жестко связанно зубчатое колесо с большим количеством зубьев. От этого колеса вращение передается трибу со стрелкой. Из-за разницы количества зубьев на колесе и трибах осуществляется многооборотность последнего триба.

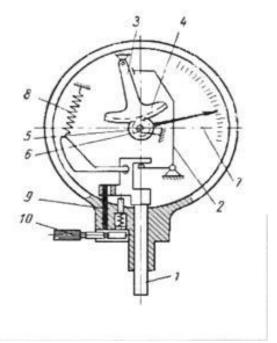


Рисунок 7 – Устройство рычажно-зубчатой головки

4. Индикаторные нутромеры и глубиномеры

Предназначены для измерения высоты пазов, выступов и впадин, глубины отверстий, других внутренних размеров деталей относительными и абсолютными методами измерений.

Общий принцип подобен индикатору часового типа — как рычажные приборы они преобразуют малую измеряемую величину в существенное перемещение стрелки по шкале индикатора.

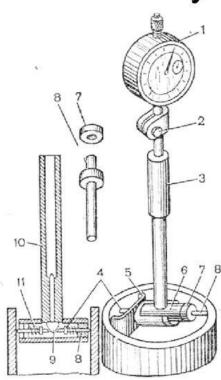
В таблицах 3 и 4 представлены измерительные характеристики и внешний вид этих рычажных приборов.

Таблица 3 – Нутромер индикаторный ГОСТ 868-82

Модель и диапазон измерений	Цена деления, мм
НИ 6-10	0,01
НИ 10-18	0,01
НИ 18-50	0,01
НИ 50-100	0,01
НИ 100-160	0,01
НИ 160-250	0,01
НИ 250-450	0,01

Таблица 4 – Глубиномер индикаторный ГИ ГОСТ 16209-82

Диапазон измерений, мм	Цена деления, мм
0-100	0,01


Нутромеры вставляют в отверстия, слегка покачивая из стороны в сторону. Перед измерением нутромер предварительно настраивают на ожидаемую глубину по микрометру или блоку ПКМД. Основную стрелку устанавливают на 0. При касании шарика измерительного стержня к основанию измеряемой поверхности стрелка отклоняется вправо или влево. Тогда положительные отклонения

отнимают от установленного значения глубины, а отрицательные – наоборот, прибавляют.

С показаниями глубиномеров поступают аналогично. В отличие от нутромеров глубиномеры имеют установочную плиту, которая прижимается к измеряемой поверхности, относительно которой производится замер глубины.

Нутромеры и глубиномеры поставляются в комплекте с дополнительными сменными стержнями заданных длин, чтобы увеличить диапазон измерений.

Устройство индикаторного нутромера

- 1. часовой индикатор
- 2. Винт
- 3. Направляющая втулка
- 4. Движок
- 5. центрирующий мостик
- 6. тройника головки прибора
- 7. В тройнике расположен закреплённый гайкой
- 8. сменный измерительный стержень
- 9. Грибок
- 10. длинный стержень, соприкасающийся со стержнем меньшего размера

Индикатор имеет 2 шкалы. Первая указывает на количество полных оборотов второй шкалы, а она – на размер в пределах 1 мм при цене деления 0,01 мм.

Для измерения стержень прибора выдвигают. Стандартное расстояние - 10 мм. Пределы измерений увеличивают с использованием дополнительных стержней.

С учетом этого выполняют замеры по следующей технологии.

- 1. Измерительный инструмент помещается в отверстие строго перпендикулярно его оси.
- 2. По наклону стрелки определяется отклонение размера в большую или меньшую сторону при легких покачиваниях прибора.

Если стрелка отклоняется вправо, то диаметр измеряемого отверстия меньше заданного, а если влево, то больше на показанное значение.

5. Прочие рычажные приборы

К ним можно отнести:

- 1) рычажно-зубчатые индикаторы;
- 2) рычажные скобы;
- 3) пружинные микрометры (микрокаторы).
- 1) **Индикаторы рычажно-зубчатые ИРБ** предназначены для абсолютных и относительных измерений линейных размеров, контроля отклонений от заданной геометрической формы и взаимного расположения поверхностей.

Шкала индикатора типа ИРБ размещена параллельно оси измерительного рычага в среднем положении и перпендикулярно к плоскости его поворота.

Выпускаются с ценой деления 0,01 и 0,001 мм.

Рисунок 2 – Индикатор рычажно-зубчатый ИРБ

2) Скоба рычажная СР предназначены для измерения линейных размеров прецизионных деталей, как методом непосредственной оценки, так и методом сравнения с мерой, в точном приборостроении, машиностроении и других отраслях промышленности. Шкала отсчетного устройства может быть расположена от вертикального до горизонтального положения.

Скобы рычажные выпускаются с ценой деления 0.001 мм.

Таблица 5 – Скобы рычажные СР (ТУ 2-034-227-87)

Модель и диапазон измерений	Цена деления, мм
CP 0-25	0,001
CP 25-50	0,001
CP 50-75	0,001
CP 75-100	0,001

3) Измерительные пружинные головки

МИКРОКАТОРЫ типа ИГП — это механические прецизионные индикаторы, предназначенные для высокоточных измерений линейных размеров и контроля геометрической формы.

Могут применяться как в специальных стойках, так и в различного вида измерительных устройствах и приспособлениях с присоединительным диаметром 28 мм.

В конструкции прибора используется измерительный механизм в виде скрученной в средней части ленточной пружины, при растягивании поворачивающейся на определенный угол. Измеряемая длина, которую показывает стрелка, укрепленная в средней части пружины, пропорциональна углу поворота пружины.

Точность, линейность, повторяемость и чувствительность — это основные отличительные признаки микрокаторов.

Настройку микрокатора на контролируемый размер осуществляют по концевым мерам, располагаемым между измерительным наконечником и плоскостью стола стойки.

Таблица 6 – Ми	крокаторы
----------------	-----------

Модель	Диапазон измерений, +/-, мм	Цена деления, мм
02ИГП	0,006	0,0002
05ИГП	0,015	0,0005
1ИГП	0,030	0,0010
1ИГП	0,100	0,0010
2ИГП	0,060	0,0020
5ИГП	0,150	0,0050

4) Измерительные пружинные малогабаритные головки

Микаторы типа ИПМ — это механические прецизионные индикаторы предназначены для измерения линейных размеров изделий и их отклонений от заданной геометрической формы, а также для встраивания в различные измерительные приборы.

В конструкции прибора используется измерительный механизм в виде скрученной в средней части ленточной пружины, при растягивании поворачивающейся на определенный угол.

Точность, линейность, повторяемость и чувствительность – это основные отличительные признаки микаторов.

Присоединительный диаметр 8 мм, вылет измерительного стержня 32 мм.

Таблица 7 – **Микаторы** ГОСТ 14712-79

Модель	Диапазон измерений, +/-, мм	Цена деления, мм
1ИПМ	0,05	0,001
2ИПМ	0,10	0,002

Контрольные вопросы

- 1. Назначение и классификация рычажных инструментов
- 2. Устройство и принцип действия индикатора часового типа
- 3. Другие виды микрометрических инструментов рычажного типа